A023048 Smallest prime having least positive primitive root n, or 0 if no such prime exists.
2, 3, 7, 0, 23, 41, 71, 0, 0, 313, 643, 4111, 457, 1031, 439, 0, 311, 53173, 191, 107227, 409, 3361, 2161, 533821, 0, 12391, 0, 133321, 15791, 124153, 5881, 0, 268969, 48889, 64609, 0, 36721, 55441, 166031, 1373989, 156601, 2494381, 95471, 71761, 95525767
Offset: 1
Keywords
Examples
a(2) = 3, since 3 has 2 as smallest positive primitive root and no prime p < 3 has 2 as smallest positive primitive root. a(24) = 533821, since prime 533821 has 24 as smallest positive primitive root and no prime p < 533821 has 24 as smallest positive primitive root.
References
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..107 (from the web page of Tomás Oliveira e Silva)
- Wouter Meeussen, Smallest Primes with Specified Least Primitive Root
- Tomás Oliveira e Silva, Least primitive root of prime numbers
- Index entries for primes by primitive root
Crossrefs
Programs
-
Mathematica
t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; Unprotect[Prime]; Prime[0] = 0; Prime@t; Clear[Prime]; Protect[Prime] (* Robert G. Wilson v, Dec 15 2005 *)
-
Python
from sympy import nextprime, perfect_power, primitive_root def a(n): if perfect_power(n): return 0 p = 2 while primitive_root(p) != n: p = nextprime(p) return p print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Feb 13 2023
-
Python
# faster version for initial segment of sequence from itertools import count, islice from sympy import nextprime, perfect_power, primitive_root def agen(): # generator of terms p, adict, n = 2, {None: 0}, 1 for k in count(1): v = primitive_root(p) if v not in adict: adict[v] = p if perfect_power(n): adict[n] = 0 while n in adict: yield adict[n]; n += 1 p = nextprime(p) print(list(islice(agen(), 40))) # Michael S. Branicky, Feb 13 2023
Formula
a(n) = min { prime(k) | A001918(k) = n } U {0} = A000040(A066529(n)) (or zero). - M. F. Hasler, Jun 01 2018
Extensions
Comment corrected by Christopher J. Smyth, Oct 16 2013
Comments