A023052 Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
Offset: 1
Examples
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
Links
- Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
- Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
- Hans Havermann, Extended table of values for A023052 and A046074
- Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Narcissistic Number
- Index entries for sequences related to powerful numbers
Crossrefs
Cf. A005188 (here the power must be equal to the number of digits).
Programs
-
Mathematica
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
-
PARI
is(n)=if(n<10, return(1)); my(d=digits(n),m=vecmax(d)); if(m<2, return(0)); for(k=3,logint(n,m), if(sum(i=1,#d,d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
-
PARI
select( is_A023052(n,b=10)={nn|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
Extensions
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019
Comments