A023095 a(n) is the least k > 0 such that k and 3k are anagrams in base n (written in base 10).
75, 142, 315, 12, 819, 84, 1035, 15, 198, 2766, 9555, 56, 315, 8352, 20893, 45, 950, 22000, 819, 132, 63204, 24492, 114075, 91, 2646, 938, 30015, 240, 182807, 118592, 333795, 153, 5670, 187416, 73815, 380, 623610, 176820, 5699, 231, 10406, 489808
Offset: 4
Programs
-
Maple
for n from 4 to 100 do searching:= true: if n::even then delta:= n-1 else delta:= (n-1)/2 fi; for d from 1 while searching do for x from n^(d-1)+delta-1 to floor(n^d/3) by delta while searching do if sort(convert(x,base,n)) = sort(convert(3*x,base,n)) then searching:= false; A[n]:= x; fi od od od: seq(A[i],i=4..100); # Robert Israel, Mar 20 2017
-
Mathematica
Table[k = 1; While[! Equal @@ Map[Sort@ IntegerDigits[#, n] &, {k, 3 k}], k++]; k, {n, 4, 45}] (* Michael De Vlieger, Mar 20 2017 *)
Comments