cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023110 Squares which remain squares when the last digit is removed.

This page as a plain text file.
%I A023110 #83 Oct 28 2023 02:26:25
%S A023110 0,1,4,9,16,49,169,256,361,1444,3249,18496,64009,237169,364816,519841,
%T A023110 2079364,4678569,26666896,92294449,341991049,526060096,749609641,
%U A023110 2998438564,6746486769,38453641216,133088524969,493150849009,758578289296,1080936581761
%N A023110 Squares which remain squares when the last digit is removed.
%C A023110 This A023110 = A031149^2 is the base 10 version of A001541^2 = A055792 (base 2), A001075^2 = A055793 (base 3), A004275^2 = A055808 (base 4), A204520^2 = A055812 (base 5), A204518^2 = A055851 (base 6), A204516^2 = A055859 (base 7), A204514^2 = A055872 (base 8) and A204502^2 = A204503 (base 9). - _M. F. Hasler_, Sep 28 2014
%C A023110 For the first 4 terms the square has only one digit. It is understood that deleting this digit yields 0. - _Colin Barker_, Dec 31 2017
%D A023110 R. K. Guy, Neg and Reg, preprint, Jan 2012.
%H A023110 Jon E. Schoenfield, <a href="/A023110/b023110.txt">Table of n, a(n) for n = 1..70</a> (terms 1..38 from David W. Wilson, terms 39..40 from Robert G. Wilson v, terms 41..67 from Dmitry Petukhov)
%H A023110 M. F. Hasler, <a href="/wiki/M._F._Hasler/Truncated_squares">Truncated squares</a>, OEIS wiki, Jan 16 2012
%H A023110 Joshua Stucky, <a href="https://www.math.ksu.edu/~jstucky95/papers/Pell&#39;s%20Equation%20and%20Truncated%20Squares.pdf">Pell's Equation and Truncated Squares</a>, Number Theory Seminar, Kansas State University, Feb 19 2018.
%H A023110 <a href="/index/Sq#sqtrunc">Index to sequences related to truncating digits of squares</a>.
%F A023110 Appears to satisfy a(n)=1444*a(n-7)+a(n-14)-76*sqrt(a(n-7)*a(n-14)) for n >= 16. For n = 15, 14, 13, ... this would require a(1) = 16, a(0) = 49, a(-1) = 169, ... - _Henry Bottomley_, May 08 2001; edited by _Robert Israel_, Sep 28 2014
%F A023110 a(n) = A031149(n)^2. - _M. F. Hasler_, Sep 28 2014
%F A023110 Conjectures from _Colin Barker_, Dec 31 2017: (Start)
%F A023110 G.f.: x^2*(1 + 4*x + 9*x^2 + 16*x^3 + 49*x^4 + 169*x^5 + 256*x^6 - 1082*x^7 - 4328*x^8 - 9738*x^9 - 4592*x^10 - 6698*x^11 - 6698*x^12 - 4592*x^13 + 361*x^14 + 1444*x^15 + 3249*x^16 + 256*x^17 + 169*x^18 + 49*x^19 + 16*x^20) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 1442*x^7 + x^14)).
%F A023110 a(n) = 1443*a(n-7) - 1443*a(n-14) + a(n-21) for n>22.
%F A023110 (End)
%p A023110 count:= 1: A[1]:= 0:
%p A023110 for n from 0 while count < 35 do
%p A023110   for t in [1,4,6,9] do
%p A023110     if issqr(10*n^2+t) then
%p A023110        count:= count+1;
%p A023110        A[count]:= 10*n^2+t;
%p A023110     fi
%p A023110   od
%p A023110 od:
%p A023110 seq(A[i],i=1..count); # _Robert Israel_, Sep 28 2014
%t A023110 fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range@ 1000000, fQ]^2 (* _Robert G. Wilson v_, Jan 15 2011 *)
%o A023110 (PARI) for(n=0,1e7, issquare(n^2\10) & print1(n^2",")) \\  _M. F. Hasler_, Jan 16 2012
%Y A023110 Cf. A023111.
%Y A023110 Cf. A031150, A053784, A031149, A055792, A055793, A055808, A055812, A055851, A055859, A055872.
%Y A023110 Cf. A001541, A001075, A004275, A204520, A204518, A204516, A204514, A204502, A204503.
%K A023110 nonn,base
%O A023110 1,3
%A A023110 _David W. Wilson_
%E A023110 More terms from _M. F. Hasler_, Jan 16 2012