This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023145 #31 Feb 11 2021 22:53:47 %S A023145 1,2,4,7,8,31,32,34,74,76,1052,6455,15928,251707,251765,4124458, %T A023145 27067012,27067120,69709718,69709871,69709877,69709934,69709943, %U A023145 69709954,69709963,69709964,465769810,8179002124,145935689390,382465573486,885992692751818,885992692751822 %N A023145 Numbers k such that prime(k) == 3 (mod k). %H A023145 Giovanni Resta, <a href="/A023145/b023145.txt">Table of n, a(n) for n = 1..46</a> %e A023145 204475053103 = prime(8179002124) and 204475053103 = 25*8179002124 + 3. %t A023145 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == 3, Print[n]], {n, 1, 10^9}] (* _Robert G. Wilson v_, Feb 18 2004 *) %t A023145 Select[Range[100000], Mod[Prime[#] - 3, #] == 0 &] (* _T. D. Noe_, Feb 05 2013 *) %o A023145 (Sage) %o A023145 def A023145(max) : %o A023145 terms = [] %o A023145 p = 2 %o A023145 for n in range(1, max+1) : %o A023145 if (p - 3) % n == 0 : terms.append(n) %o A023145 p = next_prime(p) %o A023145 return terms %o A023145 # _Eric M. Schmidt_, Feb 05 2013 %Y A023145 Cf. A171430, A092045, A023143, A023144, A023146, A023147, A023148, A023149, A023150, A023151, A023152. %K A023145 nonn %O A023145 1,2 %A A023145 _David W. Wilson_ %E A023145 More terms from _Robert G. Wilson v_, Feb 18 2004 %E A023145 2 more terms from _Giovanni Resta_, Feb 22 2006 %E A023145 a(29) from _Robert G. Wilson v_, Feb 22 2006 %E A023145 First two terms inserted by _Eric M. Schmidt_, Feb 05 2013 %E A023145 Terms a(30) and beyond from _Giovanni Resta_, Feb 23 2020