cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023150 Numbers k such that prime(k) == 8 (mod k).

This page as a plain text file.
%I A023150 #27 Feb 11 2021 22:54:24
%S A023150 1,3,17,443,2701,100365,637235,637325,4124455,4124473,4124587,
%T A023150 27067125,27067137,27067521,8179002131,8179002135,8179002153,
%U A023150 55762149069,382465573521,6201265271239145,6201265271240411,43525513764814933,43525513764815131,43525513764816415
%N A023150 Numbers k such that prime(k) == 8 (mod k).
%H A023150 Giovanni Resta, <a href="/A023150/b023150.txt">Table of n, a(n) for n = 1..30</a>
%t A023150 p = 1; Do[ If[ Mod[p = NextPrime[p], n] == 8, Print[n]], {n, 1, 10^9}] (* _Robert G. Wilson v_, Feb 18 2004 *)
%o A023150 (Sage)
%o A023150 def A023150(max):
%o A023150     terms = []
%o A023150     p = 2
%o A023150     for n in range(1, max+1) :
%o A023150         if (p - 8) % n == 0 : terms.append(n)
%o A023150         p = next_prime(p)
%o A023150     return terms
%o A023150 # _Eric M. Schmidt_, Feb 05 2013
%Y A023150 Cf. A092050, A023143, A023144, A023145, A023146, A023147, A023148, A023149, A023151, A023152.
%K A023150 nonn
%O A023150 1,2
%A A023150 _David W. Wilson_
%E A023150 More terms from _Robert G. Wilson v_, Feb 18 2004
%E A023150 a(15)-a(18) from _Robert G. Wilson v_, Feb 22 2006
%E A023150 First two terms inserted by _Eric M. Schmidt_, Feb 05 2013
%E A023150 Terms a(19) and beyond from _Giovanni Resta_, Feb 23 2020