cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023152 Numbers k such that prime(k) == 10 (mod k).

This page as a plain text file.
%I A023152 #30 Feb 11 2021 22:54:40
%S A023152 1,7,19,21,2703,15929,4124583,27067051,179992913,179993011,179993159,
%T A023152 1208198559,1208198859,55762149031,382465573511,382465573547,
%U A023152 18262325820337,6201265271239229,6201265271239409,6201265271239433,43525513764814941,43525513764816369,43525513764816411,43525513764816437,306268030480171419
%N A023152 Numbers k such that prime(k) == 10 (mod k).
%t A023152 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == 10, Print[n]], {n, 1, 10^9}] (* _Robert G. Wilson v_, Feb 18 2004 *)
%o A023152 (Sage)
%o A023152 def A023152(max) :
%o A023152     terms = []
%o A023152     p = 2
%o A023152     for n in range(1,max+1) :
%o A023152         if (p - 10) % n == 0 : terms.append(n)
%o A023152         p = next_prime(p)
%o A023152     return terms
%o A023152 # _Eric M. Schmidt_, Feb 05 2013
%o A023152 (PARI) n=0; forprime(p=2,1e9, if(Mod(p,n++)==10, print1(n", "))) \\ _Charles R Greathouse IV_, Apr 29 2015
%Y A023152 Cf. A092052, A023143, A023144, A023145, A023146, A023147, A023148, A023149, A023150, A023151.
%K A023152 nonn
%O A023152 1,2
%A A023152 _David W. Wilson_
%E A023152 Extended by _Robert G. Wilson v_, Feb 18 2004
%E A023152 a(9)-a(14) from _Robert G. Wilson v_, Feb 22 2006
%E A023152 First two terms inserted by _Eric M. Schmidt_, Feb 05 2013
%E A023152 a(15)-a(25) from _Giovanni Resta_, Feb 23 2020