This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023183 #28 Jul 03 2024 07:18:58 %S A023183 0,1,3,4,9,5,21,14,6,11,15,22,216,7,111,130,168,37,27,112,60,8,117,64, %T A023183 198,25,99,136,204,29,105,88,174,13,9,70,222,43,93,172,30,41,63,124, %U A023183 12,55,21,154,186,49,75,148,36,67,129,10,162,23,87,118,180,61,57,166,72,20 %N A023183 a(n) = least k such that Fibonacci(k) ends with n, or -1 if there are none. %C A023183 It appears that if n is greater than 99 and congruent to 4 or 6 (mod 8) then there is no Fibonacci number ending in that n. - _Jason Earls_, Jun 19 2004 %C A023183 This is because there is no Fibonacci number == 4 or 6 (mod 8). - _Robert Israel_, Sep 11 2020 %H A023183 Robert Israel, <a href="/A023183/b023183.txt">Table of n, a(n) for n = 0..9999</a> %p A023183 V:= Array(0..999,-1): %p A023183 V[0]:= 0: u:= 1: v:= 0: %p A023183 for n from 1 to 1500 do %p A023183 t:= v; %p A023183 v:= u+v mod 1000; %p A023183 u:= t; %p A023183 if V[v] = -1 then V[v]:= n fi; %p A023183 if V[v mod 100] = -1 then V[v mod 100] := n fi; %p A023183 if V[v mod 10] = -1 then V[v mod 10]:= n fi; %p A023183 od: %p A023183 seq(V[i],i=0..999); # _Robert Israel_, Sep 11 2020 %t A023183 d[n_]:=IntegerDigits[n]; Table[j=0; While[Length[d[Fibonacci[j]]]<(le=Length[y=d[n]]), j++]; i=j; While[Take[d[Fibonacci[i]],-le]!=y,i++]; i,{n,0,65}] (* _Jayanta Basu_, May 18 2013 *) %o A023183 (Python) %o A023183 from itertools import count %o A023183 def A023183(n): %o A023183 if n < 2: return n %o A023183 if n > 99 and n%8 in {4, 6}: return -1 %o A023183 k, f, g, s = 3, 1, 2, str(n) %o A023183 pow10, seen = 10**len(s), set() %o A023183 while (f, g) not in seen: %o A023183 seen.add((f, g)) %o A023183 if g%pow10 == n: %o A023183 return k %o A023183 f, g, k = g, (f+g)%pow10, k+1 %o A023183 return -1 %o A023183 print([A023183(n) for n in range(66)]) # _Michael S. Branicky_, Jun 27 2024 %Y A023183 Cf. A000045, A023184, A020344, A020345. %K A023183 sign,base,look %O A023183 0,3 %A A023183 _David W. Wilson_