cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023189 Conjecturally, number of infinitely recurring prime patterns of width 2n-1.

This page as a plain text file.
%I A023189 #19 Aug 25 2025 09:22:21
%S A023189 1,1,1,3,4,4,14,13,16,48,55,50,173,148,147,665,580,559,1920,1447,1975,
%T A023189 6240,4228,5689,15764,17562,14332,46207,39071,35317,172311,134752,
%U A023189 110758,381384,299971,479935,1154568,733900,1027967,2581763,2636545,2333308,8369027,5516720,6043194
%N A023189 Conjecturally, number of infinitely recurring prime patterns of width 2n-1.
%C A023189 Of the patterns counted by A023192, the number of those that start and end with a prime. - _Sean A. Irvine_, May 27 2019
%H A023189 Pontus von Brömssen, <a href="/A023189/b023189.txt">Table of n, a(n) for n = 1..60</a>
%e A023189 From _Jon E. Schoenfield_, May 17 2024: (Start)
%e A023189 The table below lists every (conjecturally) infinitely recurring prime pattern of width 2n-1 for n = 1..7. Each p represents a prime; each c represents a composite.
%e A023189 .
%e A023189   n  2n-1  a(n)  prime patterns
%e A023189   -  ----  ----  --------------------------------------------------
%e A023189   1     1     1  p
%e A023189   2     3     1  pcp
%e A023189   3     5     1  pcccp
%e A023189   4     7     3  pcccccp, pcpcccp, pcccpcp
%e A023189   5     9     4  pcccccccp, pcpcccccp, pcccccpcp, pcpcccpcp
%e A023189   6    11     4  pcccccccccp, pcccpcccccp, pcccccpcccp, pcccpcpcccp
%e A023189   7    13    14  pcccccccccccp, pcpcccccccccp, pcccpcccccccp,
%e A023189                  pcccccpcccccp, pcccccccpcccp, pcccccccccpcp,
%e A023189                  pcpcccpcccccp, pcpcccccpcccp, pcccpcpcccccp,
%e A023189                  pcccpcccccpcp, pcccccpcpcccp, pcccccpcccpcp,
%e A023189                  pcpcccpcpcccp, pcccpcpcccpcp
%e A023189 (End)
%Y A023189 Cf. A023190, A023191, A023192.
%K A023189 nonn,changed
%O A023189 1,4
%A A023189 _David W. Wilson_
%E A023189 Name edited by _Jon E. Schoenfield_, May 17 2024
%E A023189 a(43)-a(45) from _Pontus von Brömssen_, Aug 25 2025