cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023195 Prime numbers that are the sum of the divisors of some n.

This page as a plain text file.
%I A023195 #66 Jun 18 2022 17:35:48
%S A023195 3,7,13,31,127,307,1093,1723,2801,3541,5113,8011,8191,10303,17293,
%T A023195 19531,28057,30103,30941,86143,88741,131071,147073,292561,459007,
%U A023195 492103,524287,552793,579883,598303,684757,704761,732541,735307,797161,830833,1191373
%N A023195 Prime numbers that are the sum of the divisors of some n.
%C A023195 If n > 2 and sigma(n) is prime, then n must be an even power of a prime number. For example, 1093 = sigma(3^6). - _T. D. Noe_, Jan 20 2004
%C A023195 All primes of the form 2^n-1 (Mersenne primes) are in the sequence because if n is a natural number then sigma(2^(n-1)) = 2^n-1. So A000668 is a subsequence of this sequence. If sigma(n) is prime then n is of the form p^(q-1) where both p & q are prime (the proof is easy). - _Farideh Firoozbakht_, May 28 2005
%C A023195 Primes of the form 1 + p + p^2 + ... + p^k where p is prime.
%C A023195 If n = sigma(p^k) is in the sequence, then k+1 is prime. - _Franklin T. Adams-Watters_, Dec 19 2011
%C A023195 Primes that are a repunit in a prime base. - _Franklin T. Adams-Watters_, Dec 19 2011.
%C A023195 Except for 3, these primes are particular Brazilian primes belonging to A085104. These prime numbers are also Brazilian primes of the form (p^x - 1)/(p^y - 1), p prime, belonging to A003424, with here x is prime, and y = 1. [See section V.4 of Quadrature article in Links.] - _Bernard Schott_, Dec 25 2012
%C A023195 From _Bernard Schott_, Dec 25 2012: (Start)
%C A023195 Others subsequences of this sequence:
%C A023195   A053183 for 111_p = p^2 + p + 1 when p is prime.
%C A023195   A190527 for 11111_p =  p^4 + p^3 + p^2 + p + 1 when p is prime.
%C A023195   A194257 for 1111111_p = p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime. (End)
%C A023195 Subsequence of primes from A002191. - _Michel Marcus_, Jun 10 2014
%H A023195 David W. Wilson, <a href="/A023195/b023195.txt">Table of n, a(n) for n = 1..10000</a>
%H A023195 Bernard Schott, <a href="/A125134/a125134.pdf">Les nombres brésiliens</a>, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
%e A023195 307 = 1 + 17 + 17^2; 307 and 17 are primes.
%t A023195 t={3}; lim=10^9; n=1; While[p=Prime[n]; k=2; s=1+p+p^2; s<lim, While[s<lim, If[PrimeQ[s], AppendTo[t,s]]; k=k+2; s=s+(1+p)p^(k-1)]; n++]; t=Union[t]
%t A023195 Select[DivisorSigma[1,Range[2 10^6]],PrimeQ]//Union (* _Harvey P. Dale_, Jun 18 2022 *)
%o A023195 (PARI) upto(lim)=my(v=List([3]),t); forprime(p=2,solve(x=1,lim^(1/4), x^4+x^3+x^2+x+1-lim), forprime(e=5,1+log(lim)\log(p), if(isprime(t=sigma(p^(e-1))) && t<=lim, listput(v,t)))); forprime(p=2, solve(x=1,lim^(1/2),x^2+x+1-lim), if(isprime(t=p^2+p+1), listput(v,t))); vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Dec 20 2011
%o A023195 (Python)
%o A023195 from sympy import isprime, divisor_sigma
%o A023195 A023195_list = sorted(set([3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)])) # _Chai Wah Wu_, Jul 23 2016
%Y A023195 Intersection of A002191 and A000040.
%Y A023195 Cf. A000203, A000668, A023194 (the n that produce these primes), A053696, A085104, A003424, A053183, A190527, A194257.
%K A023195 nonn
%O A023195 1,1
%A A023195 _David W. Wilson_