cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023425 Generalized Catalan numbers: a(0) = 1, a(n) = a(n-1) + Sum_{k=1..n-4} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 13, 34, 90, 241, 652, 1780, 4899, 13581, 37893, 106340, 299978, 850187, 2419788, 6913658, 19822439, 57015620, 164476023, 475752469, 1379553027, 4009532279, 11678165796, 34081307147, 99646051271, 291845778020, 856147139606, 2515368741707, 7400713869808, 21803597196231
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of bargraphs of semiperimeter n-2 with no valleys of width 1 (i.e., no DHU configurations, where U=(0,1), H=(1,0), D=(0,-1)). Example: a(8) = 34 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only the one corresponding to the composition [2,1,2] has a valley of width 1. - Emeric Deutsch, Aug 11 2016

Crossrefs

Programs

  • Maple
    A023425 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            procname(n-1)+add(procname(k)*procname(n-k),k=1..n-4) ;
        end if;
    end proc: # R. J. Mathar, May 01 2015
  • Mathematica
    a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-k ], {k, 1, n-4} ];

Formula

The sequence a(n-3) (for n>=3) has the g.f. 1/G(0) where G(k) = 1 - q/(1 - q - q^2 - q^3 / G(k+1) ). - Joerg Arndt, Dec 06 2014
n*a(n) +2*(-2*n+3)*a(n-1) +2*(n-3)*a(n-2) +(2*n-9)*a(n-3) +(n-6)*a(n-4) +(2*n-15)*a(n-5) +(n-9)*a(n-6)=0. - R. J. Mathar, May 01 2015
G.f.: (3+z^2+z^3-sqrt((1-2*z-3*z^2-z^3)*(1-2*z+z^2-z^3)))/2. - Emeric Deutsch, May 24 2016
The g.f. g(x) satisfies g(x) = 1+x*g(x)+(g(x)-1)*(g(x)-x^3-x^2-x-1) and 3*x^5+5*x^4+7*x^3+6*x^2+2*x-3+(-3*x^5-5*x^4-2*x^3-3*x^2-2*x+2)*g(x)+(x^6+2*x^5+x^4+2*x^3+2*x^2-4*x+1)*g'(x). - Robert Israel, May 25 2016