cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023524 Number of distinct prime divisors of prime(n)*prime(n-1) + 1.

This page as a plain text file.
%I A023524 #15 Sep 08 2022 08:44:47
%S A023524 1,1,1,2,3,2,3,2,3,2,3,3,4,3,3,3,3,3,3,4,2,3,3,2,3,4,3,4,2,3,4,4,3,3,
%T A023524 3,3,2,3,4,3,3,3,4,2,3,3,5,3,5,3,3,2,3,3,2,4,3,3,3,3,3,4,3,3,3,4,3,3,
%U A023524 4,3,3,4,4,3,3,4,4,4,4,6,3,4,3,2,2,3,2
%N A023524 Number of distinct prime divisors of prime(n)*prime(n-1) + 1.
%C A023524 This is taking prime(0)=1. - _Robert Israel_, Dec 22 2015
%H A023524 Robert Israel, <a href="/A023524/b023524.txt">Table of n, a(n) for n = 1..10000</a>
%p A023524 1,seq(nops(numtheory:-factorset(ithprime(n)*ithprime(n-1)+1)), n=2..100); # _Robert Israel_, Dec 22 2015
%t A023524 Prepend[Table[PrimeNu[Prime@ n Prime[n - 1] + 1], {n, 2, 80}], 1] (* _Michael De Vlieger_, Dec 22 2015 *)
%o A023524 (PARI) a(n) = if (n==1, 1, omega(prime(n)*prime(n-1) + 1)); \\ _Michel Marcus_, Dec 22 2015
%o A023524 (Magma) [#PrimeDivisors((NthPrime(n)*(NthPrime(n-1))+1)): n in [1..100]]; // _Vincenzo Librandi_, Dec 23 2015
%K A023524 nonn
%O A023524 1,4
%A A023524 _Clark Kimberling_