A023536 Convolution of natural numbers with A023532.
1, 2, 4, 7, 10, 14, 19, 25, 31, 38, 46, 55, 65, 75, 86, 98, 111, 125, 140, 155, 171, 188, 206, 225, 245, 266, 287, 309, 332, 356, 381, 407, 434, 462, 490, 519, 549, 580, 612, 645, 679, 714, 750, 786, 823, 861, 900, 940, 981, 1023, 1066, 1110, 1155
Offset: 1
Keywords
Links
- Vladimir Letsko, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
A023536[n_] := n*(n + 5)/2 - 2 - Sum[Round[Sqrt[2*k + 4]], {k, 2, n}]; Array[A023536, 60] (* Paolo Xausa, Feb 28 2025 *)
-
Python
from math import comb, isqrt def A023536(n): return comb(n+2,2)-sum(isqrt((k<<3)+1)-1>>1 for k in range(1,n+2)) # Chai Wah Wu, Feb 27 2025
Formula
a(n) = (n(n + 5) - 4 )/2 - Sum_{k=2..n} floor(1/2 + sqrt(2(k + 2))). - Jan Hagberg (jan.hagberg(AT)stat.su.se), Oct 16 2002
From Paul Barry, May 24 2004: (Start)
a(n) = (n+1)(n+2)/2 - Sum_{k=1..n+1} floor((sqrt(8k+1)-1)/2);
a(n) = Sum_{k=1..n+1} k-floor((sqrt(8k+1)-1)/2). (End)
Extensions
Corrected by Jan Hagberg (jan.hagberg(AT)stat.su.se), Oct 16 2002
Comments