This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023537 #48 Jun 09 2025 10:26:08 %S A023537 1,5,13,28,54,98,171,291,487,806,1324,2164,3525,5729,9297,15072,24418, %T A023537 39542,64015,103615,167691,271370,439128,710568,1149769,1860413, %U A023537 3010261,4870756,7881102,12751946,20633139,33385179,54018415,87403694,141422212,228826012 %N A023537 a(n) = Lucas(n+4) - (3*n+7). %C A023537 Define a triangle with T(n, 1) = n*(n-1) + 1 and T(n, n) = n for n = 1, 2, 3, ... The interior terms T(r, c) = T(r - 1, c) + T(r - 2, c - 1); this triangle will give the sum of terms in row(n) = a(n). The rows begin 1; 3 2; 7 3 3; 13 6 5 4; 21 13 8 7 5 having row(n) sums 1, 5, 13, 28, 54. - _J. M. Bergot_, Feb 17 2013 %D A023537 Wolfdieter Lang in "Applications of Fibonacci Numbers", Vol. 7, p. 235, eds.: G. E. Bergum et al, Kluwer, 1998. %H A023537 Colin Barker, <a href="/A023537/b023537.txt">Table of n, a(n) for n = 1..1000</a> %H A023537 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1). %F A023537 Convolution of natural numbers with Lucas numbers A000204. %F A023537 a(n) = A027960(n+1, n+3). %F A023537 From _Wolfdieter Lang_: (Start) %F A023537 a(n) = 7*(F(n+1) - 1) + 4*F(n) - 3*n; F(n) = A000045 (Fibonacci); %F A023537 G.f.: x*(1 + 2*x)/((1-x)^2*(1 - x - x^2)). (End) %F A023537 a(n) - a(n-1) = A101220(3, 1, n). - _Ross La Haye_, May 31 2006 %F A023537 a(n+1) - a(n) = A027961(n+1). - _R. J. Mathar_, Feb 21 2013 %F A023537 From _Colin Barker_, Mar 11 2017: (Start) %F A023537 a(n) = -4 + (2^(-1 - n)*((1 - sqrt(5))^n*(-15 + 7*sqrt(5)) + (1 + sqrt(5))^n*(15 + 7*sqrt(5)))) / sqrt(5) - 3*(1+n). %F A023537 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n > 4. (End) %F A023537 From _G. C. Greubel_, Jun 08 2025: (Start) %F A023537 a(n) = a(n-1) + a(n-2) + 3*n - 2. %F A023537 a(n) = Sum_{i=0..n-1} Sum_{j=0..i} A027960(i,j). %F A023537 E.g.f.: exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ) - (3*x+7)*exp(x). (End) %p A023537 with(combinat): L:=n->fibonacci(n+2)-fibonacci(n-2): seq(L(n),n=0..12): seq(L(n+4)-3*n-7,n=1..40); # _Emeric Deutsch_, Aug 08 2005 %t A023537 Table[LucasL[n + 4] - (3n + 7), {n, 40}] (* _Alonso del Arte_, Feb 17 2013 *) %o A023537 (Magma) [Lucas(n+4) -(3*n+7): n in [1..40]]; // _Vincenzo Librandi_, Apr 16 2011 %o A023537 (PARI) Vec(x*(1+2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ _Colin Barker_, Mar 11 2017 %o A023537 (Sage) [lucas_number2(n+4, 1, -1) -(3*n+7) for n in (1..40)] # _G. C. Greubel_, Jun 01 2019 %o A023537 (GAP) List([1..40], n-> Lucas(1, -1, n+4)[2] -(3*n+7) ); # _G. C. Greubel_, Jun 01 2019 %o A023537 (Scala) def lucas(n: BigInt): BigInt = { %o A023537 val zero = BigInt(0) %o A023537 def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match { %o A023537 case `zero` => a %o A023537 case _ => fibTail(n - 1, b, a + b) %o A023537 } %o A023537 fibTail(n, 2, 1) %o A023537 } %o A023537 (1 to 40).map(n => lucas(n + 4) - (3 * n + 7)) // _Alonso del Arte_, Oct 20 2019 %Y A023537 Cf. A000032, A000045, A027960, A027961, A101220. %K A023537 nonn,easy %O A023537 1,2 %A A023537 _Clark Kimberling_ %E A023537 More terms from _Emeric Deutsch_, Aug 08 2005