cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023538 Convolution of natural numbers with (1, p(1), p(2), ... ), where p(k) is the k-th prime.

This page as a plain text file.
%I A023538 #14 Jul 11 2020 02:29:42
%S A023538 1,4,10,21,39,68,110,169,247,348,478,639,837,1076,1358,1687,2069,2510,
%T A023538 3012,3581,4221,4934,5726,6601,7565,8626,9788,11053,12425,13906,15500,
%U A023538 17221,19073,21062,23190,25467,27895,30480,33228,36143,39231,42498,45946,49585
%N A023538 Convolution of natural numbers with (1, p(1), p(2), ... ), where p(k) is the k-th prime.
%H A023538 F. Javier de Vega, <a href="https://arxiv.org/abs/2003.13378">An extension of Furstenberg's theorem of the infinitude of primes</a>, arXiv:2003.13378 [math.NT], 2020.
%F A023538 a(n) = Sum_{k<=n} [(A158611(k+1)) * (A000027(n-k+1))] = Sum_{k<=n} [(A008578(k)) * (A000027(n-k+1))]. [_Jaroslav Krizek_, Aug 05 2009; Correction for change of offset in A158611 and A008578 in Aug 2009 _Jaroslav Krizek_, Jan 27 2010]
%t A023538 Nest[Accumulate,Join[{1},Select[Range@200,PrimeQ]],2] (* _Vladimir Joseph Stephan Orlovsky_, Jan 25 2012 *)
%Y A023538 Cf. A007504, A014148, A014150, A014284, A023538, A178138.
%K A023538 nonn
%O A023538 1,2
%A A023538 _Clark Kimberling_