This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023613 #23 Jul 18 2022 09:59:27 %S A023613 1,1,2,4,6,10,16,26,42,69,111,180,291,471,762,1233,1995,3228,5223, %T A023613 8452,13675,22127,35802,57929,93731,151660,245391,397051,642442, %U A023613 1039493,1681935,2721428,4403363,7124791 %N A023613 Convolution of Fibonacci numbers and A023533. %H A023613 Danny Rorabaugh, <a href="/A023613/b023613.txt">Table of n, a(n) for n = 0..4000</a> %F A023613 a(n) = Sum_{k=1..n+1} A000045(k)*A023533(n+2-k). - _Danny Rorabaugh_, Mar 13 2015 %t A023613 Join[{1,1}, Table[Sum[Fibonacci[m+2 -Binomial[j+3,3]], {j,0,n}], {n,6}, {m, Binomial[n+3,3] -2, Binomial[n+4,3] -3}]]//Flatten (* _G. C. Greubel_, Jul 14 2022 *) %o A023613 (Sage) #Assuming A023533 is available as an array %o A023613 for n in range(34): %o A023613 print(n, sum([A023533[k]*fibonacci(n+2-k) for k in range(1,n+2)])) %o A023613 # _Danny Rorabaugh_, Mar 14 2015 %o A023613 (Magma) %o A023613 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; %o A023613 [(&+[Fibonacci(k)*A023533(n+2-k): k in [1..n+1]]): n in [0..50]]; // _G. C. Greubel_, Jul 14 2022 %Y A023613 Cf. A000045, A023533. %K A023613 nonn %O A023613 0,3 %A A023613 _Clark Kimberling_