This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023645 #74 Dec 23 2024 14:53:41 %S A023645 0,0,1,1,1,2,1,2,2,2,1,4,1,2,3,3,1,4,1,4,3,2,1,6,2,2,3,4,1,6,1,4,3,2, %T A023645 3,7,1,2,3,6,1,6,1,4,5,2,1,8,2,4,3,4,1,6,3,6,3,2,1,10,1,2,5,5,3,6,1,4, %U A023645 3,6,1,10,1,2,5,4,3,6,1,8,4,2,1,10,3,2,3,6,1,10,3,4,3,2,3,10,1,4,5,7,1,6,1,6 %N A023645 a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even. %C A023645 Vertex-transitive graphs of valency 2 with n nodes. %C A023645 Number of values of k such that n+2 divided by k leaves a remainder 2. - _Amarnath Murthy_, Aug 01 2002 %C A023645 Number of divisors of n that are less than n/2. - _Peter Munn_, Mar 31 2017, or equivalently, number of divisors of n that are greater than 2. - _Antti Karttunen_, Feb 20 2023 %C A023645 For n > 2, a(n) is the number of planar arrangements of equal-sized regular n-gons such that their centers lie on a circle and neighboring n-gons have an edge in common. - _Peter Munn_, Apr 23 2017 %C A023645 Number of partitions of n into two distinct parts such that the smaller divides the larger. - _Wesley Ivan Hurt_, Dec 21 2017 %D A023645 CRC Handbook of Combinatorial Designs, 1996, p. 649. %H A023645 T. D. Noe, <a href="/A023645/b023645.txt">Table of n, a(n) for n = 1..10000</a> %H A023645 Felix Fröhlich et al., <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2017-March/017399.html">Rings of regular polygons</a>, SeqFan thread, March 26 2017. %H A023645 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/trans/">Transitive Graphs</a> %F A023645 G.f.: Sum_{k>0} x^(3*k) / (1 - x^k). - _Michael Somos_, Apr 29 2003. %F A023645 a(2*n) = A069930(n). a(2*n + 1) = A095374(n). - _Michael Somos_, Aug 30 2012 %F A023645 a(n) = A072528(n+2,2) for n > 2. - _Peter Munn_, May 14 2017 %F A023645 From _Peter Bala_, Jan 13 2021: (Start) %F A023645 a(n) = Sum_{ d|n, d < n/2 } 1. Cf. A296955. %F A023645 G.f.: Sum_{k >= 3} x^k/(1 - x^k). (End) %F A023645 a(n) = A049992(n) - A014405(n). - _Antti Karttunen_, Feb 20 2023 %F A023645 Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 5/2), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Jan 08 2024 %e A023645 x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + 4*x^12 + ... %p A023645 with(numtheory); f := n->if n mod 2 = 1 then tau(n)-1 else tau(n)-2; fi; %t A023645 Table[s = DivisorSigma[0, n]; If[OddQ[n], s - 1, s - 2], {n, 100}] (* _T. D. Noe_, Nov 18 2013 *) %t A023645 Array[DivisorSigma[0, #] - 1 - Boole@ EvenQ@ # &, 104] (* _Michael De Vlieger_, Apr 25 2017 *) %o A023645 (PARI) {a(n) = if( n<1, 0, numdiv(n) - 2 + n%2)} /* _Michael Somos_, Apr 29 2003 */ %o A023645 (PARI) a(n) = sumdiv(n, d, d < n/2); \\ _Michel Marcus_, Apr 01 2017 %Y A023645 Cf. A000005, A001620, A023637-A023647. %Y A023645 Cf. A014405, A049992, A069930, A095374, A296955, A321014. %Y A023645 Second column of A072528. %K A023645 nonn,easy %O A023645 1,6 %A A023645 _N. J. A. Sloane_ %E A023645 More terms from _Vladeta Jovovic_, Dec 03 2001