cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023651 Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.

This page as a plain text file.
%I A023651 #18 Feb 26 2024 09:19:05
%S A023651 0,2,15,24,1575,39366
%N A023651 Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.
%C A023651 Except for k = 0, this sequence is a subsequence of A049101. - _Jason Yuen_, Feb 26 2024
%t A023651 Do[ If[ 2n == Apply[ Times, IntegerDigits[n]] Apply[ Plus, IntegerDigits[n]], Print[n]], {n, 0, 10^7} ]
%o A023651 (PARI) isok(n) = if(n, factorback(digits(n)), 0) * sumdigits(n) == 2*n \\ _Mohammed Yaseen_, Jul 22 2022
%o A023651 (Python)
%o A023651 from math import prod
%o A023651 def s(n): return sum(map(int, str(n)))
%o A023651 def p(n): return prod(map(int, str(n)))
%o A023651 for n in range(0, 10**6):
%o A023651   if p(n)*s(n)==2*n:
%o A023651     print(n) # _Mohammed Yaseen_, Jul 22 2022
%Y A023651 Cf. A007953, A007954, A049101.
%Y A023651 Cf. A038364, A038369, A062237, A066282.
%K A023651 nonn,base,fini,full
%O A023651 1,2
%A A023651 _Jason Earls_, Dec 11 2001
%E A023651 Offset corrected by _Arkadiusz Wesolowski_, Oct 17 2012