cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023655 Convolution of (F(2), F(3), F(4), ...) and A023533.

This page as a plain text file.
%I A023655 #15 Jul 08 2024 08:53:57
%S A023655 1,2,3,6,10,16,26,42,68,111,180,291,471,762,1233,1995,3228,5223,8451,
%T A023655 13675,22127,35802,57929,93731,151660,245391,397051,642442,1039493,
%U A023655 1681935,2721428,4403363,7124791
%N A023655 Convolution of (F(2), F(3), F(4), ...) and A023533.
%H A023655 G. C. Greubel, <a href="/A023655/b023655.txt">Table of n, a(n) for n = 1..4700</a>
%F A023655 a(n) = Sum_{k=0..n-1} Fibonacci(k+2) * A023533(n-k), n >= 1. -  _G. C. Greubel_, Jul 16 2022
%t A023655 Table[Sum[Fibonacci[m+1 -Binomial[j+3,3]], {j,0,n}], {n,0,5}, {m, Binomial[n+3,3] +1, Binomial[n+4,3]}]//Flatten (* _G. C. Greubel_, Jul 16 2022 *)
%o A023655 (Magma)
%o A023655 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
%o A023655 [(&+[Fibonacci(k+2)*A023533(n-k): k in [0..n-1]]): n in [1..50]]; // _G. C. Greubel_, Jul 16 2022
%o A023655 (SageMath)
%o A023655 def A023655(n, k): return sum(fibonacci(k+1-binomial(j+3,3)) for j in (0..n))
%o A023655 flatten([[A023655(n, k) for k in (binomial(n+3,3)+1..binomial(n+4,3))] for n in (0..5)]) # _G. C. Greubel_, Jul 16 2022
%Y A023655 Essentially the same as A023613.
%Y A023655 Cf. A000045, A023533.
%K A023655 nonn
%O A023655 1,2
%A A023655 _Clark Kimberling_