This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023846 #23 Jun 29 2025 11:19:54 %S A023846 0,4,5,6,6,8,10,10,10,11,12,13,15,14,14,16,15,17,16,20,19,18,18,20,19, %T A023846 22,25,22,23,25,24,26,24,25,24,26,25,27,30,30,28,31,29,29,31,29,31,33, %U A023846 32,33,33,37,36,38,39,40,38,42,40,41,40,39,39,40,39,40,39,40,43,41,43,47,43,45,47,45,46 %N A023846 Sum of exponents in prime-power factorization of binomial(5n, n+4). %C A023846 By Kummer's theorem, a(n) is the sum over all primes p of the number of carries when n+4 is added to 4n-4 in base p. - _Robert Israel_, Nov 09 2017 %H A023846 Ivan Neretin, <a href="/A023846/b023846.txt">Table of n, a(n) for n = 1..10000</a> %H A023846 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kummer%27s_theorem">Kummer's theorem</a>. %F A023846 a(n) = A023844(n) + A001222(4*n-3) - A001222(n+4). - _Amiram Eldar_, Jun 14 2025 %p A023846 seq(numtheory:-bigomega(binomial(5*n,n+4)), n=1..100); # _Robert Israel_, Nov 09 2017 %t A023846 Table[PrimeOmega[Binomial[5 n, n + 4]], {n, 77}] (* _Ivan Neretin_, Nov 09 2017 *) %o A023846 (PARI) a(n) = bigomega(binomial(5*n, n+4)); \\ _Michel Marcus_, Nov 09 2017 %Y A023846 Cf. A001222, A023837, A023839, A023840, A023841, A023842, A023843, A023844, A023845, A023847, A023848, A023849, A023850, A023851. %K A023846 nonn %O A023846 1,2 %A A023846 _Clark Kimberling_