This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023879 #24 Sep 08 2022 08:44:48 %S A023879 1,1,3,12,79,722,8675,128177,2248873,45644104,1051632553,27107038863, %T A023879 772751427746,24136897360750,819689757351091,30068876227952332, %U A023879 1184869328943005936,49914047187427191742 %N A023879 Number of partitions in expanding space. %H A023879 Vaclav Kotesovec, <a href="/A023879/b023879.txt">Table of n, a(n) for n = 0..380</a> %F A023879 G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-1)). %F A023879 G.f.: exp( Sum_{n>=1} A062796(n)/n*x^n ), where A062796(n) = Sum_{d|n} d^d. - _Paul D. Hanna_, Sep 05 2012 %F A023879 a(n) ~ n^(n-1). - _Vaclav Kotesovec_, Mar 14 2015 %p A023879 seq(coeff(series(mul((1-x^k)^(-k^(k-1)),k=1..n),x,n+1), x, n), n = 0 .. 20); # _Muniru A Asiru_, Oct 31 2018 %t A023879 nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Mar 14 2015 *) %o A023879 (PARI) {a(n)=polcoeff(prod(k=1,n,(1-x^k+x*O(x^n))^(-k^(k-1))),n)} %o A023879 (PARI) {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)),n)} \\ _Paul D. Hanna_, Sep 05 2012 %o A023879 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // _G. C. Greubel_, Oct 31 2018 %Y A023879 Cf. A062796. %K A023879 nonn %O A023879 0,3 %A A023879 _Olivier Gérard_