cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023896 Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.

This page as a plain text file.
%I A023896 #162 Jun 21 2024 13:17:56
%S A023896 1,1,3,4,10,6,21,16,27,20,55,24,78,42,60,64,136,54,171,80,126,110,253,
%T A023896 96,250,156,243,168,406,120,465,256,330,272,420,216,666,342,468,320,
%U A023896 820,252,903,440,540,506,1081,384,1029,500,816,624,1378,486,1100,672
%N A023896 Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
%C A023896 Sum of totatives of n, i.e., sum of integers up to n and coprime to n.
%C A023896 a(1) = 1, since 1 is coprime to any positive integer.
%C A023896 Row sums of A038566. - _Wolfdieter Lang_, May 03 2015
%C A023896 Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - _Muhammed Hedayet_, May 19 2024
%D A023896 Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
%D A023896 David M. Burton, Elementary Number Theory, p. 171.
%D A023896 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
%D A023896 J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.
%H A023896 Michael De Vlieger, <a href="/A023896/b023896.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A023896 John D. Baum, <a href="https://www.jstor.org/stable/2690056">A Number-Theoretic Sum</a>, Mathematics Magazine 55.2 (1982): 111-113.
%H A023896 Geoffrey B. Campbell, <a href="https://ideas.repec.org/a/hin/jijmms/728942.html">Dirichlet summations and products over primes</a>, Int. J. Math. Math. Sci. 16 92) (1993) 359. eq. (3.1)
%H A023896 Muhammed H. Islam and Shahriar Manzoor, <a href="https://www.researchgate.net/publication/303459783">φ1 and phitorial are injections, for any positive integer N, where N > 1</a>.
%H A023896 Constantin M. Petridi, <a href="https://arxiv.org/abs/1612.07632">The Sums of the k-powers of the Euler set and their connection with Artin's conjecture for primitive roots</a>, arXiv:1612.07632 [math.NT], 2016.
%H A023896 David Zmiaikou, <a href="https://tel.archives-ouvertes.fr/tel-00648120/">Origamis and permutation groups</a>, Thesis, 2011. See p. 65.
%F A023896 a(n) = n*A023022(n) for n > 2.
%F A023896 a(n) = phi(n^2)/2 = n*phi(n)/2 = A002618(n)/2 if n > 1, a(1)=1. See the Apostol reference for this exercise.
%F A023896 a(n) = Sum_{1 <= k < n, gcd(k, n) = 1} k.
%F A023896 If n = p is a prime, a(p) = T(p-1) where T(k) is the k-th triangular number (A000217). - _Robert G. Wilson v_, Jul 31 2004
%F A023896 Equals A054521 * [1,2,3,...]. - _Gary W. Adamson_, May 20 2007
%F A023896 a(n) = A053818(n) * A175506(n) / A175505(n). - _Jaroslav Krizek_, Aug 01 2010
%F A023896 If m,n > 1 and gcd(m,n) = 1 then a(m*n) = 2*a(m)*a(n). - _Thomas Ordowski_, Nov 09 2014
%F A023896 G.f.: Sum_{n>=1} mu(n)*n*x^n/(1-x^n)^3, where mu(n) = A008683(n). - _Mamuka Jibladze_, Apr 24 2015
%F A023896 G.f. A(x) satisfies A(x) = x/(1 - x)^3 - Sum_{k>=2} k * A(x^k). - _Ilya Gutkovskiy_, Sep 06 2019
%F A023896 For n > 1: a(n) = (n*A076512(n)/2)*A009195(n). - _Jamie Morken_, Dec 16 2019
%F A023896 Sum_{n>=1} 1/a(n) = 2 * A065484 - 1 = 3.407713... . - _Amiram Eldar_, Oct 09 2023
%e A023896 G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ...
%e A023896 a(12) = 1 + 5 + 7 + 11 = 24.
%e A023896 n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
%p A023896 A023896 := proc(n)
%p A023896     if n = 1 then
%p A023896         1;
%p A023896     else
%p A023896         n*numtheory[phi](n)/2 ;
%p A023896     end if;
%p A023896 end proc: # _R. J. Mathar_, Sep 26 2013
%t A023896 a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}]
%t A023896 a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* _Michael Somos_, Jul 08 2014 *)
%o A023896 (PARI) {a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
%o A023896 (PARI) A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - _M. F. Hasler_, Feb 01 2021
%o A023896 (Haskell)
%o A023896 a023896 = sum . a038566_row  -- _Reinhard Zumkeller_, Mar 04 2012
%o A023896 (Magma) [1] cat [n*EulerPhi(n)/2: n in [2..70]]; // _Vincenzo Librandi_, May 16 2015
%o A023896 (Python)
%o A023896 from sympy import totient
%o A023896 def A023896(n): return 1 if n == 1 else n*totient(n)//2 # _Chai Wah Wu_, Apr 08 2022
%o A023896 (SageMath)
%o A023896 def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2
%o A023896 print([A023896(n) for n in range(1, 57)])  # _Peter Luschny_, Dec 03 2023
%Y A023896 Cf. A000010, A000203, A002180, A045545, A001783, A024816, A066760, A054521, A067392, A038566.
%Y A023896 Row sums of A127368, A144734, A144824.
%Y A023896 Cf. A000217, A002618, A008683, A009195, A023022, A065484, A076512, A175505, A175506.
%K A023896 nonn,easy,nice
%O A023896 1,3
%A A023896 _Olivier Gérard_
%E A023896 Typos in programs corrected by _Zak Seidov_, Aug 03 2010
%E A023896 Name and example edited by _Wolfdieter Lang_, May 03 2015