cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023919 Theta series of A*_7 lattice. Expansion of F_8(q^2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 56, 0, 0, 112, 126, 0, 0, 0, 0, 0, 0, 336, 0, 0, 0, 0, 576, 0, 0, 672, 756, 0, 0, 0, 0, 0, 0, 1232, 0, 0, 0, 0, 1512, 0, 0, 2016, 2072, 0, 0, 0, 0, 0, 0, 2800, 0, 0, 0, 0, 4032, 0, 0, 4048, 4158, 0, 0, 0, 0, 0, 0, 5712, 0, 0, 0, 0, 5544, 0, 0, 6944, 7560
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 16*q^7 + 56*q^12 + 112*q^15 + 126*q^16 + 336*q^23 + 576*q^28 + 672*q^31 + 756*q^32 + 1232*q^39 + 1512*q^44 + 2016*q^47 + 2072*q^48 + O(q^49)
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Crossrefs

Cf. A008447 (A_7).

Programs

  • Magma
    L:=Lattice("A",7); D:=Dual(L); T1 := ThetaSeries(D,60);
  • Mathematica
    terms = 81; phi[q_] := EllipticTheta[3, 0, q]; psi[q_] := (1/2)*q^(-1/8) * EllipticTheta[2, 0, q^(1/2)]; F8[q_] := (1/8) (phi[q^2]^7 + (2 Sqrt[q] psi[q^4])^7 + 14 phi[q^2]^5 phi[q]^2 - 7 phi[q^2]^3 phi[q]^4); s = Simplify[Normal[F8[q^2] + O[q]^terms], q>0]; CoefficientList[s, q][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)