cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023922 Theta series of A*_10 lattice.

This page as a plain text file.
%I A023922 #12 Jul 08 2025 17:22:34
%S A023922 1,0,0,0,0,22,0,0,0,110,0,110,330,0,660,924,990,0,0,0,2662,0,1980,
%T A023922 4840,0,6534,7260,9460,0,0,0,15840,0,10230,21780,0,27830,32670,33660,
%U A023922 0,0,0,50820,0,30140,71236,0,84700,87120,99000,0,0,0,136840,0
%N A023922 Theta series of A*_10 lattice.
%D A023922 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.
%H A023922 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/As10.html">Home page for this lattice</a>
%H A023922 K. Ono, <a href="https://doi.org/10.1006/jnth.1998.2354">On the Circular Summation of the Eleventh Powers of Ramanujan's Theta Function</a>, Journal of Number Theory, Volume 76, Issue 1, May 1999, Pages 62-65.
%F A023922 G.f.: eta^11(q)/eta(q^11) + 800*q^5*eta^11(q^11)/eta(11) - 9*P11(q)*eta^11(q) + (308/3)*A(q) + (22/3)*B(q), where P11(q) is the g.f. for A213256, A(q) is the g.f. for A065103, B(q) is the g.f. for A065099, and eta is the Dedekind eta function [from Ono]. - _Sean A. Irvine_, Jun 16 2019
%e A023922 G.f. = 1 + 22*q^5 + 110*q^9 + 110*q^11 + 330*q^12 + ... - _Sean A. Irvine_, Jun 16 2019
%K A023922 nonn
%O A023922 0,6
%A A023922 _N. J. A. Sloane_
%E A023922 More terms from _Sean A. Irvine_, Jun 16 2019