This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024128 #27 Sep 10 2024 14:53:08 %S A024128 1,10,119,1328,14637,161046,1771555,19487164,214358873,2357947682, %T A024128 25937424591,285311670600,3138428376709,34522712143918, %U A024128 379749833583227,4177248169415636,45949729863572145,505447028499293754,5559917313492231463,61159090448414546272,672749994932560009181 %N A024128 a(n) = 11^n - n. %C A024128 Smallest prime of this form is a(18) = 5559917313492231463. - _Bruno Berselli_, Jun 17 2013 %H A024128 Vincenzo Librandi, <a href="/A024128/b024128.txt">Table of n, a(n) for n = 0..300</a> %H A024128 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-23,11). %F A024128 From _Vincenzo Librandi_, Jun 17 2013: (Start) %F A024128 G.f.: (1-3*x+12*x^2)/((1-11*x) (1-x)^2). %F A024128 a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3). (End) %F A024128 E.g.f.: exp(x)*(exp(10*x) - x). - _Elmo R. Oliveira_, Sep 10 2024 %t A024128 Table[11^n - n, {n, 0, 20}] (* or *) CoefficientList[Series[(1 - 3 x + 12 x^2) / ((1 - 11 x) (1 - x)^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jun 17 2013 *) %t A024128 LinearRecurrence[{13,-23,11},{1,10,119},20] (* _Harvey P. Dale_, Aug 02 2017 *) %o A024128 (Magma) [11^n-n: n in [0..20]]; // _Vincenzo Librandi_, Jul 01 2011 %o A024128 (PARI) a(n)=11^n-n \\ _Charles R Greathouse IV_, Jul 01 2011 %o A024128 (Magma) I:=[1, 10, 119]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jun 17 2013 %Y A024128 Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), A024037 (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), this sequence (k=11), A024141 (k=12). %Y A024128 Cf. A199030 (first differences). %K A024128 nonn,easy %O A024128 0,2 %A A024128 _N. J. A. Sloane_