This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024173 #19 Jun 25 2019 17:15:06 %S A024173 0,0,0,3,9,21,41,72,119,185,275,395,549,744,987,1285,1645,2076,2586, %T A024173 3185,3882,4688,5612,6667,7863,9213,10731,12428,14318,16416,18737, %U A024173 21295,24106,27187,30553,34223,38214,42543,47231,52295,57756,63633,69948,76721 %N A024173 Integer part of ((4th elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)). %H A024173 Ivan Neretin, <a href="/A024173/b024173.txt">Table of n, a(n) for n = 2..10000</a> %F A024173 a(n)= floor(A000915(n-3)/A000914(n-1)). - _R. J. Mathar_, Sep 15 2009 %F A024173 a(n) = floor((1/240) * (n-3) * (n-2) * (15*n^3 + 15*n^2 - 10*n - 8) / (2 + 3*n)). - _Ivan Neretin_, May 19 2018 %e A024173 a(4) = floor(24/35) = 0; a(5) = floor(274/85) = 3. - _R. J. Mathar_, Sep 15 2009 %p A024173 seq(floor((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2)),n=2..50); # _Muniru A Asiru_, May 19 2018 %t A024173 Table[Floor[1/240 (n - 3) (n - 2) (15 n^3 + 15 n^2 - 10 n - 8)/ (2 + 3 n)], {n, 2, 45}] (* _Ivan Neretin_, May 19 2018 *) %o A024173 (GAP) List([2..50],n->Int((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2))); # _Muniru A Asiru_, May 19 2018 %K A024173 nonn %O A024173 2,4 %A A024173 _Clark Kimberling_ %E A024173 Offset changed to 2 by _R. J. Mathar_, Sep 15 2009