cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024186 Expansion of Molien series for 8-dimensional real Clifford group 2^{1+6}.Alt_8.2 of genus 3 and order 5160960.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 18, 22, 29, 35, 48, 57, 74, 91, 116, 140, 177, 211, 265, 319, 389, 462, 566, 667, 804, 949, 1131, 1324, 1573, 1827, 2153, 2502, 2917, 3364, 3916, 4491, 5187, 5937, 6813, 7760, 8879, 10058, 11448, 12950, 14658, 16500, 18632, 20894
Offset: 0

Views

Author

N. J. A. Sloane, G. Nebe (nebe(AT)math.rwth-aachen.de)

Keywords

Crossrefs

Programs

  • Magma
    // Commands to generate the group.
    F := QuadraticField(2); M := GeneralLinearGroup(8, F); t := 1/(2*s);
    B := M! [ -t, -t, -t, -t, -t, -t, -t, -t,
    -t, t, -t, -t, t, -t, t, t,
    -t, -t, -t, t, -t, t, t, t,
    -t, -t, t, -t, t, t, t, -t,
    -t, t, -t, t, t, t, -t, -t,
    -t, -t, t, t, t, -t, -t, t,
    -t, t, t, t, -t, -t, t, -t,
    -t, t, t, -t, -t, t, -t, t ];
    S := M! [ -1, 0, 0, 0, 0, 0, 0, 0,
    0, -1, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 1 ];
    C := M! [ 1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 1,
    0, 1, 0, 0, 0, 0, 0, 0 ];
    G := sub< M | B, S, C >; Order(G);
  • Mathematica
    ker = {1, 0, 1, -1, 0, 0, 1, 0, -1, -1, 0, 3, -2, 0, -2, 2, 0, 0, -2, 1, 1, 1, -1, -1, 2, 0, -1, -1, 1, 2, 0, -3, 0, 2, 2, -3, -2, 0, 4, 0, -2, -3, 2, 2, 0, -3, 0, 2, 1, -1, -1, 0, 2, -1, -1, 1, 1, 1, -2, 0, 0, 2, -2, 0, -2, 3, 0, -1, -1, 0, 1, 0, 0, -1, 1, 0, 1, -1};
    init = {1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 18, 22, 29, 35, 48, 57, 74, 91, 116, 140, 177, 211, 265, 319, 389, 462, 566, 667, 804, 949, 1131, 1324, 1573, 1827, 2153, 2502, 2917, 3364, 3916, 4491, 5187, 5937, 6813, 7760, 8879, 10058, 11448, 12950, 14658, 16500, 18632, 20894, 23487, 26279, 29417, 32801, 36630, 40695, 45285, 50223, 55690, 61559, 68119, 75092, 82841, 91141, 100256, 110026, 120800, 132226, 144804, 158251, 172881, 188489, 205560, 223657};
    LinearRecurrence[ker, init, 1000] (* Jean-François Alcover, Jan 05 2020 *)

Formula

Molien series = (t^148 - t^142 + t^140 + t^136 - t^134 + t^132 + 3*t^128 + 2*t^124 + 4*t^120 + 5*t^116 + 7*t^112 + t^110 + 7*t^108 + t^106 + 10*t^104 + 2*t^102 + 11*t^100 + 3*t^98 + 12*t^96 + 4*t^94 + 14*t^92 + 5*t^90 + 16*t^88 + 5*t^86 + 15*t^84 + 4*t^82 + 20*t^80 + 7*t^78 + 18*t^76 + 4*t^74 + 18*t^72 + 7*t^70 + 20*t^68 + 4*t^66 + 15*t^64 + 5*t^62 + 16*t^60 + 5*t^58 + 14*t^56 + 4*t^54 + 12*t^52 + 3*t^50 + 11*t^48 + 2*t^46 + 10*t^44 + t^42 + 7*t^40 + t^38 + 7*t^36 + 5*t^32 + 4*t^28 + 2*t^24 + 3*t^20 + t^16 - t^14 + t^12 + t^8 - t^6 + 1) /
(t^156 - t^154 - t^150 + t^148 - t^142 + t^138 + t^136 - 3*t^132 + 2*t^130 + 2*t^126 - 2*t^124 + 2*t^118 - t^116 - t^114 - t^112 + t^110 + t^108 - 2*t^106 + t^102 + t^100 - t^98 - 2*t^96 + 3*t^92 - 2*t^88 - 2*t^86 + 3*t^84 + 2*t^82 - 4*t^78 + 2*t^74 + 3*t^72 - 2*t^70 - 2*t^68 + 3*t^64 - 2*t^60 - t^58 + t^56 + t^54 - 2*t^50 + t^48 + t^46 - t^44 - t^42 - t^40 + 2*t^38 - 2*t^32 + 2*t^30 + 2*t^26 - 3*t^24 + t^20 + t^18 - t^14 + t^8 - t^6 - t^2 + 1).

Extensions

Rechecked Mar 30 2004. There were errors in the formula line, although not in the sequence itself.