A024306 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k=[ (n+1)/2 ], s = (natural numbers >= 2), t = (natural numbers >= 3).
6, 8, 22, 27, 52, 61, 100, 114, 170, 190, 266, 293, 392, 427, 552, 596, 750, 804, 990, 1055, 1276, 1353, 1612, 1702, 2002, 2106, 2450, 2569, 2960, 3095, 3536, 3688, 4182, 4352, 4902, 5091, 5700, 5909, 6580, 6810, 7546, 7798, 8602, 8877, 9752, 10051, 11000, 11324
Offset: 1
Keywords
Formula
[4n^3+45n^2+116n+48 -3(n+4)^2(-1)^n]/48.