This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024320 #13 Jan 28 2022 22:57:12 %S A024320 0,0,2,3,5,7,11,13,24,30,36,46,50,60,70,74,103,117,131,139,157,171, %T A024320 177,193,207,221,278,294,310,330,348,360,390,408,424,448,470,486,573, %U A024320 611,625,653,673,699,739,761,781,803,835,863,891,925,1054,1078,1104,1136,1180,1214 %N A024320 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (1, p(1), p(2), ... ). %H A024320 G. C. Greubel, <a href="/A024320/b024320.txt">Table of n, a(n) for n = 1..1000</a> %F A024320 a(n) = A023531(1) + Sum_{j=2..floor((n+1)/2)} A023531(j)*Prime(n-j+1). - _G. C. Greubel_, Jan 19 2022 %t A024320 A023531[n_]:= SquaresR[1, 8*n+9]/2; %t A024320 p[n_]:= If[n==1, 1, Prime[n-1]]; %t A024320 a[n_]:= Sum[A023531[j]*p[n-j+1], {j, Floor[(n+1)/2]}]; %t A024320 Table[a[n], {n, 60}] (* _G. C. Greubel_, Jan 19 2022 *) %o A024320 (Magma) %o A024320 A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >; %o A024320 p:= func< n | n eq 1 select 1 else NthPrime(n-1) >; %o A024320 [ (&+[A023531(j)*p(n-j+1): j in [1..Floor((n+1)/2)]]) : n in [1..60]]; // _G. C. Greubel_, Jan 19 2022 %o A024320 (Sage) %o A024320 def A023531(n): %o A024320 if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 %o A024320 else: return 0 %o A024320 def p(n): %o A024320 if (n==1): return 1 %o A024320 else: return nth_prime(n-1) %o A024320 [sum( A023531(j)*p(n-j+1) for j in (1..floor((n+1)/2)) ) for n in (1..60)] # _G. C. Greubel_, Jan 19 2022 %Y A024320 Cf. A024312, A024313, A024314, A024315, A024316, A024317, A024318, A024319, A024321, A024322, A024323, A024324, A024325, A024326, A024327. %Y A024320 Cf. A000040, A023531. %K A024320 nonn %O A024320 1,3 %A A024320 _Clark Kimberling_