cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024358 Sum of the sizes of binary subtrees of the perfect binary tree of height n.

This page as a plain text file.
%I A024358 #32 Oct 13 2022 05:56:25
%S A024358 0,1,8,105,6136,8766473,8245941529080,3508518207951157937469961,
%T A024358 311594265746788494170062926869662848646207622648,
%U A024358 1217308491239906829392988008143949647398943617188660186130545502913055217344025410733271773705
%N A024358 Sum of the sizes of binary subtrees of the perfect binary tree of height n.
%C A024358 Size of binary tree = number of internal nodes.
%H A024358 Alois P. Heinz, <a href="/A024358/b024358.txt">Table of n, a(n) for n = 0..12</a>
%H A024358 Cyril Banderier, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/subtrees.pdf">On the sum of the sizes of binary subtrees of a perfect binary tree</a>, personal note, 2000.
%F A024358 a(n) = B'_n(1) where B_{n+1}(x) = 1 + x*B_n(x)^2.
%F A024358 From _Alois P. Heinz_, Jul 12 2019: (Start)
%F A024358 a(n) = Sum_{k=0..2^n-1} (2^n-1-k) * A309049(2^n-1,k).
%F A024358 a(n) = A309052(2^n-1). (End)
%p A024358 B:= proc(n) B(n):= `if`(n<0, 0, expand(1+x*B(n-1)^2)) end:
%p A024358 a:= n-> subs(x=1, diff(B(n), x)):
%p A024358 seq(a(n), n=0..9);  # _Alois P. Heinz_, Jul 12 2019
%t A024358 B[n_] := If[n<0, 0, Expand[1+x*B[n-1]^2]];
%t A024358 a[n_] := D[B[n], x] /. x -> 1;
%t A024358 Table[a[n], {n, 0, 9}] (* _Jean-François Alcover_, Oct 13 2022, after _Alois P. Heinz_ *)
%Y A024358 Cf. A003095, A309049, A309052.
%K A024358 easy,nonn
%O A024358 0,3
%A A024358 _Cyril Banderier_, Jun 09 2000
%E A024358 a(0) changed to 0 by _Alois P. Heinz_, Jul 12 2019