This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024375 #7 Sep 07 2022 18:18:43 %S A024375 1,0,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1, %T A024375 2,1,2,2,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,2,1,2,2,1,1,2,2,1,2,2,2,2, %U A024375 0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,2,1,2,2,1,2,1 %N A024375 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023532, t = A023533. %H A024375 G. C. Greubel, <a href="/A024375/b024375.txt">Table of n, a(n) for n = 1..5000</a> %t A024375 A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1]; %t A024375 A023532[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 0, 1]; %t A024375 A025375[n_]:= A025075[n]= Sum[A023532[j]*A023533[n-j+1], {j, Floor[(n+1)/2]}]; %t A024375 Table[A025375[n], {n, 130}] (* _G. C. Greubel_, Sep 07 2022 *) %o A024375 (Magma) %o A024375 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; %o A024375 A023532:= func< n | IsSquare(8*n+9) select 0 else 1 >; %o A024375 A025375:= func< n | (&+[A023532(k)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]) >; %o A024375 [A025375(n): n in [1..130]]; // _G. C. Greubel_, Sep 07 2022 %o A024375 (SageMath) %o A024375 @CachedFunction %o A024375 def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1 %o A024375 def A023532(n): return 0 if is_square(8*n+9) else 1 %o A024375 def A025375(n): return sum(A023532(k)*A023533(n-k+1) for k in (1..((n+1)//2))) %o A024375 [A025375(n) for n in (1..130)] # _G. C. Greubel_, Sep 07 2022 %Y A024375 Cf. A023532, A023533. %K A024375 nonn %O A024375 1,35 %A A024375 _Clark Kimberling_