This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024382 #38 Sep 08 2022 08:44:48 %S A024382 1,6,59,812,14389,312114,8011695,237560280,7990901865,300659985630, %T A024382 12511934225955,570616907588100,28301322505722525,1516683700464669450, %U A024382 87336792132539066775,5378036128829898836400,352652348707389385916625,24533212082483855129037750 %N A024382 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4. %C A024382 a(n) is equal to the determinant of the n X n matrix whose (i,j)-entry is KroneckerDelta[i,j]((4*i+2)-1)+1. - _John M. Campbell_, May 23 2011 %C A024382 From _R. J. Mathar_, Oct 01 2016: (Start) %C A024382 The k-th elementary symmetric functions of the integers 1+4*j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0: %C A024382 1 %C A024382 1 1 %C A024382 1 6 5 %C A024382 1 15 59 45 %C A024382 1 28 254 812 585 %C A024382 1 45 730 5130 14389 9945 %C A024382 1 66 1675 20460 122119 312114 208845 %C A024382 1 91 3325 62335 633619 3365089 8011695 5221125 %C A024382 1 120 5964 158760 2441334 21740040 105599276 237560280 151412625 %C A024382 This here is the first subdiagonal. The diagonal seems to be A007696. The 2nd column is A000384, the 3rd A024378, the 4th A024379. (End) %H A024382 Alois P. Heinz, <a href="/A024382/b024382.txt">Table of n, a(n) for n = 0..350</a> %F A024382 a(n) = (8*n-2)*a(n-1) - (4*n-3)^2*a(n-2) for n>1. - _Alois P. Heinz_, Feb 25 2015 %F A024382 E.g.f.: (4-log(1-4*x))/(4*(1-4*x)^(5/4)). - _Gheorghe Coserea_, Dec 24 2015 %e A024382 For n = 1 we have a(1) = 1*5*(1/1 + 1/5) = 6. %e A024382 For n = 2 we have a(2) = 1*5*9*(1/1 + 1/5 + 1/9) = 59. %e A024382 For n = 3 we have a(3) = 1*5*9*13*(1/1 + 1/5 + 1/9 + 1/13) = 812. - _Gheorghe Coserea_, Dec 24 2015 %p A024382 a:= proc(n) option remember; `if`(n<3, [1, 6, 59][n+1], %p A024382 (8*n-2)*a(n-1) -(4*n-3)^2*a(n-2)) %p A024382 end; %p A024382 seq(a(n), n=0..20); # _Alois P. Heinz_, Feb 25 2015 %t A024382 Table[Det[Array[KroneckerDelta[#1,#2]((4*#1+2)-1)+1&,{k, k}]],{k,1,10}] (* _John M. Campbell_, May 23 2011 *) %t A024382 RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == (8 n - 2) a[n - 1] - (4 n - 3)^2 a[n - 2]}, a, {n, 0, 20}] (* _Vincenzo Librandi_, Dec 26 2015 *) %o A024382 (PARI) x = 'x + O('x^33); Vec(serlaplace((4-log(1-4*x))/(4*(1-4*x)^(5/4)))) \\ _Gheorghe Coserea_, Dec 24 2015 %o A024382 (Magma) I:=[1,6]; [n le 2 select I[n] else (8*n-10)*Self(n-1)-(4*n-7)^2*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Dec 26 2015 %Y A024382 Cf. A024216. %K A024382 nonn %O A024382 0,2 %A A024382 _Clark Kimberling_ %E A024382 More terms from _Alois P. Heinz_, Feb 25 2015