cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024389 [ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 1 mod 4}.

This page as a plain text file.
%I A024389 #10 Jul 06 2019 20:59:48
%S A024389 2,19,72,190,409,773,1336,2159,3309,4863,6907,9532,12840,16939,21945,
%T A024389 27985,35189,43699,53664,65239,78591,93891,111320,131067,153328,
%U A024389 178309,206221,237286,271732,309795,351722,397763,448180,503242,563224,628413
%N A024389 [ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 1 mod 4}.
%F A024389 Empirical g.f.: -x*(x^17 -2*x^16 +2*x^14 -x^13 -x^11 +2*x^10 -4*x^8 +4*x^7 +12*x^6 +21*x^5 +23*x^4 +27*x^3 +21*x^2 +13*x +2) / ((x -1)^5*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Aug 16 2014
%F A024389 a(n) = floor(A024380(n) / A024378(n+2)). - _Sean A. Irvine_, Jul 06 2019
%K A024389 nonn
%O A024389 1,1
%A A024389 _Clark Kimberling_