This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024448 #12 Feb 03 2020 10:35:04 %S A024448 30,247,1358,5102,16186,41817,98190,220628,441410,852887,1551568, %T A024448 2631642,4293186,6866813,10757450,16151192,23873746,34440605,48249066, %U A024448 66877582,91117898,122953643,165196270,218615372,284119458,364962773,462059210,579605426,732954370 %N A024448 a(n) = 3rd elementary symmetric function of the first n+2 primes. %H A024448 Alois P. Heinz, <a href="/A024448/b024448.txt">Table of n, a(n) for n = 1..10000</a> %p A024448 SymmPolyn := proc(L::list,n::integer) %p A024448 local c,a,sel; %p A024448 a :=0 ; %p A024448 sel := combinat[choose](nops(L),n) ; %p A024448 for c in sel do %p A024448 a := a+mul(L[e],e=c) ; %p A024448 end do: %p A024448 a; %p A024448 end proc: %p A024448 A024448 := proc(n) %p A024448 [seq(ithprime(k),k=1..n+2)] ; %p A024448 SymmPolyn(%,3) ; %p A024448 end proc: # _R. J. Mathar_, Sep 23 2016 %p A024448 # second Maple program: %p A024448 b:= proc(n) option remember; convert(series(`if`(n=0, 1, %p A024448 b(n-1)*(ithprime(n)*x+1)), x, 4), polynom) %p A024448 end: %p A024448 a:= n-> coeff(b(n+2), x, 3): %p A024448 seq(a(n), n=1..30); # _Alois P. Heinz_, Sep 06 2019 %t A024448 b[n_] := b[n] = If[n == 0, 1, b[n - 1] (Prime[n] x + 1)]; %t A024448 a[n_] := SeriesCoefficient[b[n + 2], {x, 0, 3}]; %t A024448 a /@ Range[30] (* _Jean-François Alcover_, Feb 03 2020, after _Alois P. Heinz_ *) %K A024448 nonn %O A024448 1,1 %A A024448 _Clark Kimberling_