This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024449 #13 Mar 19 2020 16:00:55 %S A024449 210,2927,20581,107315,414849,1376640,4224150,11063618,27395788, %T A024449 62364155,129081579,252768753,480307611,885449578,1541654028, %U A024449 2623783892,4318819858,6832984023,10644660237,16195499543,24304992465,36231495836,52916319106,75433702422 %N A024449 4th elementary symmetric function of the first n+3 primes. %H A024449 Alois P. Heinz, <a href="/A024449/b024449.txt">Table of n, a(n) for n = 1..10000</a> %p A024449 SymmPolyn := proc(L::list,n::integer) %p A024449 local c,a,sel; %p A024449 a :=0 ; %p A024449 sel := combinat[choose](nops(L),n) ; %p A024449 for c in sel do %p A024449 a := a+mul(L[e],e=c) ; %p A024449 end do: %p A024449 a; %p A024449 end proc: %p A024449 A024449 := proc(n) %p A024449 [seq(ithprime(k),k=1..n+3)] ; %p A024449 SymmPolyn(%,4) ; %p A024449 end proc: # _R. J. Mathar_, Sep 23 2016 %p A024449 # second Maple program: %p A024449 b:= proc(n) option remember; convert(series(`if`(n=0, 1, %p A024449 b(n-1)*(ithprime(n)*x+1)), x, 5), polynom) %p A024449 end: %p A024449 a:= n-> coeff(b(n+3), x, 4): %p A024449 seq(a(n), n=1..30); # _Alois P. Heinz_, Sep 06 2019 %t A024449 b[n_] := b[n] = Series[If[n == 0, 1, b[n - 1] (Prime[n] x + 1)], {x, 0, 5}] // Normal; %t A024449 a[n_] := Coefficient[b[n + 3], x, 4]; %t A024449 a /@ Range[24] (* _Jean-François Alcover_, Mar 19 2020, after _Alois P. Heinz_ *) %o A024449 (PARI) e4(v)=sum(i=1,#v-3,v[i]*sum(j=i+1,#v-2,v[j]*sum(k=j+1,#v-1,v[k]*vecsum(v[k+1..#v])))) %o A024449 a(n)=e4(primes(n)) \\ _Charles R Greathouse IV_, Jun 15 2015 %K A024449 nonn %O A024449 1,1 %A A024449 _Clark Kimberling_