A024453 a(n) = [ (3rd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+2 primes}.
3, 14, 48, 124, 279, 543, 981, 1710, 2758, 4329, 6519, 9365, 13088, 18023, 24448, 32237, 42031, 53897, 67765, 84548, 104253, 127677, 155845, 188299, 224778, 266201, 312202, 363845, 426136, 495751, 574268, 660165, 758682, 865898, 984968, 1116797
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # to get the first N terms P:= [seq(ithprime(i),i=1..N+2)]: E1:= ListTools:-PartialSums(P): E2:= ListTools:-PartialSums([0,seq(P[i]*E1[i-1],i=2..N+2)]): E3:= ListTools:-PartialSums([0,seq(P[i]*E2[i-1],i=2..N+2)]): seq(floor(E3[n]/E1[n]),n=3..N+2); # Robert Israel, May 01 2019