cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024462 Triangle T(n,k) read by rows, arising in enumeration of catafusenes.

This page as a plain text file.
%I A024462 #41 Jul 02 2025 16:01:55
%S A024462 1,1,1,1,2,1,1,5,7,3,1,8,22,24,9,1,11,46,90,81,27,1,14,79,228,351,270,
%T A024462 81,1,17,121,465,1035,1323,891,243,1,20,172,828,2430,4428,4860,2916,
%U A024462 729,1,23,232,1344,4914,11718,18144,17496,9477,2187,1,26,301,2040,8946,26460,53298,71928,61965,30618,6561
%N A024462 Triangle T(n,k) read by rows, arising in enumeration of catafusenes.
%H A024462 G. C. Greubel, <a href="/A024462/b024462.txt">Rows n = 0..20 of triangle, flattened</a>
%H A024462 S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, <a href="https://hrcak.srce.hr/177109">Unbranched catacondensed polygonal systems containing hexagons and tetragons</a>, Croatica Chem. Acta, 69 (1996), 757-774; see Table III (p. 767).
%F A024462 T(n, k) = 3 * T(n-1, k-1) + T(n-1, k), starting with [1], [1, 1], [1, 2, 1].
%F A024462 From _Petros Hadjicostas_, May 27 2019: (Start)
%F A024462 T(n, k) = (n-2)!/(k! * (n-k)!) * (9*n*(n-1) - 4*k*(3*n-k-2)) * 3^(k-2) for n >= max(k, 2) and k >= 0. (See the top formula of p. 767 in Cyvin et al. (1996).)
%F A024462 Bivariate g.f.: Sum_{n, k >= 0} T(n, k) * x^n * y^k = 1 + x * (1 + y) + x^2 * (1 + y)^2/(1 - x - 3 * x * y).
%F A024462 (End)
%e A024462 Triangle begins (rows indexed by n >= 0 and columns by k >= 0):
%e A024462    1;
%e A024462    1,  1;
%e A024462    1,  2,   1;
%e A024462    1,  5,   7,   3;
%e A024462    1,  8,  22,  24,    9;
%e A024462    1, 11,  46,  90,   81,   27;
%e A024462    1, 14,  79, 228,  351,  270,   81;
%e A024462    1, 17, 121, 465, 1035, 1323,  891, 243;
%e A024462    1, 20, 172, 828, 2430, 4428, 4860, 2916, 729;
%e A024462    ...
%p A024462 ## The following Maple program gives the Taylor expansion of the bivariate g.f. of T(n,k) in powers of x:
%p A024462 T := proc (x, y) 1+x*(y+1)+x^2*(y+1)^2/(1-x-3*y*x) end proc;
%p A024462 expand(taylor(T(x, y), x = 0, 20)); ## _Petros Hadjicostas_, May 27 2019
%t A024462 T[n_, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, If[n==1 && k==1, 1, If[n==2 && k==1, 2, If[k==n && n>=2, 3^(n-2), 3*T[n-1, k-1] + T[n-1, k]]]]];
%t A024462 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 30 2019 *)
%o A024462 (PARI) T(n,k)=if(n<0||k<0||k>n,0,if(n<3,[[1],[1,1],[1,2,1]][n+1][k+1],3*T(n-1,k-1)+T(n-1,k))) \\ _Ralf Stephan_, Jan 25 2005
%o A024462 (Sage)
%o A024462 def T(n, k):
%o A024462     if (k<0 and k>n): return 0
%o A024462     elif (k==0): return 1
%o A024462     elif (n==k==1): return 1
%o A024462     elif (n==2 and k==1): return 2
%o A024462     elif (n>=2 and k==n): return 3^(n-2)
%o A024462     else: return 3*T(n-1, k-1) + T(n-1, k)
%o A024462 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, May 30 2019
%Y A024462 Cf. A038763.
%Y A024462 Left-edge columns (essentially) include A016789 and A038764. Right-edge diagonal columns (essentially) include A000244, A038765, and A081892. Row sums are (essentially) A000302.
%K A024462 tabl,nonn,easy
%O A024462 0,5
%A A024462 _N. J. A. Sloane_, May 03 2000
%E A024462 More terms from _James Sellers_, May 03 2000
%E A024462 Edited by _Ralf Stephan_, Jan 25 2005