This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024621 #12 Nov 05 2024 20:39:47 %S A024621 1,4,7,8,11,15,16,19,24,28,33,42,43,45,54,69,71,79,87,92,118,121,137, %T A024621 153,171,188,199,245,248,293,314,341,360,361,364,393,446,483,526,559, %U A024621 605,651,699,719,750,857,894,930,935,1050,1079,1215,1305,1348,1436,1479,1514 %N A024621 Positions of nonprimes among the powers of primes (A000961). %o A024621 (PARI) lista(nn) = {vec = vector(nn, i, i); powpr = select((i->((omega(i)==1) || (i==1))), vec); for (i = 1, #powpr, if (! isprime(powpr[i]), print1(i, ", ")););} \\ _Michel Marcus_, Oct 02 2013 %o A024621 (Python) %o A024621 from sympy import primepi, integer_nthroot %o A024621 def A024621(n): %o A024621 def bisection(f,kmin=0,kmax=1): %o A024621 while f(kmax) > kmax: kmax <<= 1 %o A024621 while kmax-kmin > 1: %o A024621 kmid = kmax+kmin>>1 %o A024621 if f(kmid) <= kmid: %o A024621 kmax = kmid %o A024621 else: %o A024621 kmin = kmid %o A024621 return kmax %o A024621 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) %o A024621 return n+primepi(bisection(f,n,n)) # _Chai Wah Wu_, Nov 05 2024 %Y A024621 Complement of A024620. %K A024621 nonn %O A024621 1,2 %A A024621 _Clark Kimberling_