This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024643 #35 Jul 31 2025 02:39:57 %S A024643 0,1,2,3,4,5,6,60,61,62,63,64,65,66,650,651,652,653,654,655,656,6540, %T A024643 6541,6542,6543,6544,6545,6546,65430,65431,65432,65433,65434,65435, %U A024643 65436,654320,654321,654322,654323,654324,654325,654326,6543210,6543211,6543212,6543213,6543214,6543215,6543216,65432100,65432101,65432102,65432103,65432104,65432105,65432106,65432160 %N A024643 n written in fractional base 7/6. %C A024643 To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b. %H A024643 Andrew Howroyd, <a href="/A024643/b024643.txt">Table of n, a(n) for n = 0..1000</a> %H A024643 <a href="/index/Ba#base_fractional">Index entries for sequences related to fractional bases</a>. %e A024643 From _Petros Hadjicostas_, Jul 22 2020: (Start) %e A024643 14 = 6*(7/6)^2 + 5*(7/6)^1 + 0*(7/6)^0 = 650_{7/6}. %e A024643 15 = 6*(7/6)^2 + 5*(7/6)^1 + 1*(7/6)^0 = 651_{7/6}. %e A024643 21 = 6*(7/6)^3 + 5*(7/6)^2 + 4*(7/6)^1 + 1*(7/6)^0 = 6541_{7/6}. %e A024643 22 = 6*(7/6)^3 + 5*(7/6)^2 + 4*(7/6)^1 + 2*(7/6)^0 = 6542_{7/6}. %e A024643 28 = 6*(7/6)^4 + 5*(7/6)^3 + 4*(7/6)^2 + 3*(7/6)^1 + 0*(7/6)^0 = 65430_{7/6}. (End) %t A024643 a[n_] := a[n] = If[n == 0, 0, 10 * a[6 * Floor[n/7]] + Mod[n, 7]]; Array[a, 50, 0] (* _Amiram Eldar_, Jul 31 2025 *) %o A024643 (PARI) a(n) = {if(n<1, 0, a(n\7 * 6) * 10 + n%7)}; \\ _Andrew Howroyd_, Aug 19 2019 %Y A024643 Cf. A024629, A245337. %K A024643 nonn,base,easy %O A024643 0,3 %A A024643 _David W. Wilson_ %E A024643 Terms a(44) and beyond from _Andrew Howroyd_, Aug 19 2019