This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024697 #13 Apr 07 2014 07:57:42 %S A024697 4,6,19,29,68,94,177,231,400,484,753,903,1340,1552,2157,2489,3352, %T A024697 3784,5013,5515,7052,7758,9773,10575,13076,14076,17023,18339,21876, %U A024697 23414,27715,29437,34570,36500,42335,44731,51560,54198,61955,65051,73700,77402,87293 %N A024697 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n+1-k), where k = [ (n+1)/2 ], p = A000040 = the primes. %C A024697 a(n) = A025129(n) for even n. - _M. F. Hasler_, Apr 06 2014 %H A024697 Reinhard Zumkeller, <a href="/A024697/b024697.txt">Table of n, a(n) for n = 1..10000</a> %p A024697 A024697:=n->sum( ithprime(k)*ithprime(n-k+1), k=1..(n+1)/2 ); seq(A024697(n), n=1..50); # _Wesley Ivan Hurt_, Apr 06 2014 %t A024697 Table[Sum[Prime[k] Prime[n - k + 1], {k, (n + 1)/2}], {n, 50}] (* _Wesley Ivan Hurt_, Apr 06 2014 *) %o A024697 (PARI) A024697(n)=sum(k=1, (n+1)\2, prime(k)*prime(n-k+1)) \\ _M. F. Hasler_, Apr 06 2014 %o A024697 (Haskell) %o A024697 a024697 n = a024697_list !! (n-1) %o A024697 a024697_list = f (tail a000040_list) [head a000040_list] 2 where %o A024697 f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) : %o A024697 f ps (p : qs) (k + 1) %o A024697 -- _Reinhard Zumkeller_, Apr 07 2014 %Y A024697 Cf. A014342, A000040. %K A024697 nonn %O A024697 1,1 %A A024697 _Clark Kimberling_ %E A024697 Name edited and values double-checked by _M. F. Hasler_, Apr 06 2014