This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024781 #17 Apr 27 2022 13:34:29 %S A024781 2,3,5,15,25,35,45,115,125,135,215,225,245,335,345,435,445,515,525, %T A024781 1115,1125,1245,1335,1345,1435,1445,2115,2135,2225,2335,2345,2435, %U A024781 3125,3445,3515,4115,4215,4225,4435,4525,5215,5245,5345,5525,11115,11245,12135 %N A024781 Every suffix prime and no 0 digits in base 6 (written in base 6). %C A024781 The final term is a(454) = 14141511414451435. %H A024781 Nathaniel Johnston, <a href="/A024781/b024781.txt">Table of n, a(n) for n = 1..454</a> (full sequence) %p A024781 a:=[[2], [3], [5]]: b:=[]: l1:=1: l2:=5: do for j from l1 to l2 do for k from 1 to 5 do d:=[op(a[j]),k]: if(isprime(op(convert(d, base, 6, 6^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: for j from 1 to nops(a) do b:=[op(b),op(convert(a[j], base, 10, 10^nops(a[j])))]: od: b:=sort(b): seq(b[j],j=1..nops(b)); # _Nathaniel Johnston_, Jun 21 2011 %o A024781 (Python) %o A024781 from sympy import isprime %o A024781 def afull(): %o A024781 prime_strings, alst = list("235"), [] %o A024781 while len(prime_strings) > 0: %o A024781 alst.extend(sorted(int(p) for p in prime_strings)) %o A024781 candidates = set(d+p for p in prime_strings for d in "12345") %o A024781 prime_strings = [c for c in candidates if isprime(int(c, 6))] %o A024781 return alst %o A024781 print(afull()) # _Michael S. Branicky_, Apr 27 2022 %Y A024781 Cf. A024779, A024780, A024781, A024782, A024783, A024784, A024785 %K A024781 nonn,base,easy,fini,full %O A024781 1,1 %A A024781 _David W. Wilson_