This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024782 #14 Apr 27 2022 15:01:46 %S A024782 2,3,5,23,25,32,43,52,65,443,452,623,625,632,652,2452,2623,6625,6652, %T A024782 42623,642623,6642623 %N A024782 Every suffix prime and no 0 digits in base 7 (written in base 7). %p A024782 a:=[[2], [3], [5]]: b:=[]: l1:=1: l2:=3: do for k from 1 to 6 do for j from l1 to l2 do d:=[op(a[j]),k]: if(isprime(op(convert(d, base, 7, 7^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: seq(op(convert(a[j], base, 10, 10^nops(a[j]))), j=1..nops(a)); # _Nathaniel Johnston_, Jun 21 2011 %o A024782 (Python) %o A024782 from sympy import isprime %o A024782 def afull(): %o A024782 prime_strings, alst = list("235"), [] %o A024782 while len(prime_strings) > 0: %o A024782 alst.extend(sorted(int(p) for p in prime_strings)) %o A024782 candidates = set(d+p for p in prime_strings for d in "123456") %o A024782 prime_strings = [c for c in candidates if isprime(int(c, 7))] %o A024782 return alst %o A024782 print(afull()) # _Michael S. Branicky_, Apr 27 2022 %Y A024782 Cf. A024779, A024780, A024781, A024783, A024784, A024785. %K A024782 nonn,easy,base,fini,full %O A024782 1,1 %A A024782 _David W. Wilson_