This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A024803 #32 Jun 22 2020 12:19:38 %S A024803 14,21,26,29,30,35,38,41,42,45,46,49,50,53,54,56,59,61,62,62,65,66,69, %T A024803 69,70,74,74,75,77,77,78,81,83,84,86,86,89,89,90,90,91,93,94,94,98,98, %U A024803 101,101,101,104,105,105,106,107,109,110,110,110,113,114,115,116,117 %N A024803 Numbers that are the sum of 3 distinct nonzero squares, including repetitions. %C A024803 Numbers n = x^2 + y^2 + z^2, with 0<x<y<z; repeat n for each such representation. %C A024803 Records of 1,2,3 etc. repetitions are set by the numbers 14, 62, 101, 161, 206, 314, 341, 446, 689, 734, 854, 1106, 1154, 1286, 1454 etc.; see A025415. - _R. J. Mathar_, Mar 15 2007 %H A024803 Georg Fischer, <a href="/A024803/b024803.txt">Table of n, a(n) for n = 1..10000</a> %H A024803 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %e A024803 14 = 1^2 + 2^2 + 3^2. %e A024803 62 = 1^2 + 5^2 + 6^2 = 2^2 + 3^2 + 7^2. %e A024803 105 = 1^2 + 2^2 + 10^2 = 4^2 + 5^2 + 8^2. %e A024803 122 = 3^2 + 7^2 + 8^2 = 4^2 + 5^2 + 9^2. %p A024803 A024803 := proc(n) local a,x,y,z ; a := 0 ; for x from 1 to floor(sqrt(n)) do for y from x+1 to floor(sqrt(n-x^2)) do z := n-x^2-y^2 ; if issqr(z) then z := sqrt(z) ; if z>y and z>x then a := a+1 ; fi ; fi ; od ; od ; RETURN(a) ; end: for n from 1 to 200 do a := A024803(n) : for i from 1 to a do printf("%d ",n) ; od ; od : # _R. J. Mathar_, Mar 15 2007 %Y A024803 Cf. A004432, A001974. %K A024803 nonn,easy %O A024803 1,1 %A A024803 _Clark Kimberling_ %E A024803 Zak Seidov pointed out that there were errors. These have now been corrected. - _N. J. A. Sloane_, Dec 05 2006 %E A024803 More terms from _R. J. Mathar_, Mar 15 2007