A024804 Numbers that are the sum of 3 distinct nonzero squares in 2 or more ways.
62, 69, 74, 77, 86, 89, 90, 94, 98, 101, 105, 110, 117, 122, 125, 126, 129, 131, 134, 138, 141, 146, 149, 150, 154, 155, 158, 161, 165, 166, 170, 173, 174, 179, 181, 182, 185, 186, 189, 194, 195, 197, 201, 203, 206, 209, 210, 213, 217, 218, 221, 222, 225, 227, 229, 230
Offset: 1
Keywords
Programs
-
Maple
isA024804 := proc(n) local ws; ws := 0 ; for x from 1 do if x^2 > n then break; end if; for y from x+1 do if x^2+y^2>n then break; end if; z := n-x^2-y^2 ; if issqr(z) then z := sqrt(z) ; if z > y then ws := ws+1 ; end if; end if ; end do: end do: ws >= 2 ; end proc: for n from 1 to 230 do if isA024804(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 07 2010
-
Mathematica
nn=230; t=Table[0, {nn}]; Do[n=i^2+j^2+k^2; If[n<=nn, t[[n]]++], {i, Sqrt[nn]}, {j, i+1, Sqrt[nn]}, {k, j+1, Sqrt[nn]}]; Flatten[Position[t, _?(#>1&)]]
Formula
{n: A025442(n) >= 2}.