cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024819 a(n) = least m such that if r and s in {1/1, 1/3, 1/5,..., 1/(2n-1)} satisfy r < s, then r < k/m < s for some integer k.

This page as a plain text file.
%I A024819 #13 Mar 01 2014 09:58:11
%S A024819 2,4,11,16,29,37,56,67,92,121,137,172,211,254,277,326,379,436,466,529,
%T A024819 596,667,704,781,862,947,1036,1082,1177,1276,1379,1486,1597,1654,1771,
%U A024819 1892,2017,2146,2279,2347,2486,2629,2776,2927,3082,3161,3322,3487,3656,3829,4006,4187
%N A024819 a(n) = least m such that if r and s in {1/1, 1/3, 1/5,..., 1/(2n-1)} satisfy r < s, then r < k/m < s for some integer k.
%C A024819 For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 07 2012
%H A024819 Clark Kimberling, <a href="/A024819/b024819.txt">Table of n, a(n) for n = 2..300</a>
%t A024819 leastSeparator[seq_] := Module[{n = 1},
%t A024819 Table[While[Or @@ (Ceiling[n #1[[1]]]
%t A024819 < 2 + Floor[n #1[[2]]] &) /@
%t A024819 Partition[Take[seq, k], 2, 1], n++];
%t A024819 n, {k, 2, Length[seq]}]];
%t A024819 t = Table[1/(2 h - 1), {h, 1, 101}];
%t A024819 leastSeparator[t]
%t A024819 (* _Peter J. C. Moses_, Aug 01 2012 *)
%Y A024819 Cf. A001000.
%K A024819 nonn
%O A024819 2,1
%A A024819 _Clark Kimberling_