A024820 a(n) = least m such that if r and s in {1/2, 1/4, 1/6,..., 1/2n} satisfy r < s, then r < k/m < s for some integer k.
3, 5, 13, 19, 33, 41, 61, 85, 99, 129, 163, 181, 221, 265, 313, 339, 393, 451, 513, 545, 613, 685, 761, 841, 883, 969, 1059, 1153, 1251, 1301, 1405, 1513, 1625, 1741, 1861, 1923, 2049, 2179, 2313, 2451, 2593, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3699, 3873, 4051, 4233
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..300
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[t_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[t, k], 2, 1], n++]; n, {k, 2, Length[t]}]]; t = Flatten[{1/(2*Range[60])}] leastSeparator[t]
Comments