A024821 Least m such that if r and s in {1/sqrt(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
4, 5, 9, 11, 17, 21, 25, 32, 40, 43, 55, 61, 67, 73, 87, 94, 105, 113, 125, 137, 145, 153, 166, 179, 188, 202, 216, 226, 246, 256, 271, 281, 297, 307, 329, 340, 351, 368, 385, 403, 421, 439, 451, 469, 481, 500, 519, 538, 551, 564, 584, 604, 624, 645, 666, 687, 708, 722, 743
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..200
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[1/Sqrt[h], {h, 1, 60}]]; leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Comments