A024822 a(n) = least m such that if r and s in {1/1, 1/4, 1/7,..., 1/(3n-2)} satisfy r < s, then r < k/m < s for some integer k.
2, 5, 9, 22, 31, 53, 81, 97, 134, 177, 201, 253, 311, 342, 409, 482, 561, 603, 691, 785, 885, 937, 1046, 1161, 1282, 1409, 1475, 1611, 1753, 1901, 2055, 2215, 2297, 2466, 2641, 2822, 3009, 3202, 3301, 3503, 3711, 3925, 4145, 4371, 4486, 4721
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..200
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[1/(3 h - 2), {h, 1, 60}]]; leastSeparator[t]
Extensions
Corrected by Clark Kimberling, Aug 07 2012
Comments