A024823 Least m such that if r and s in {1/2, 1/5, 1/8,..., 1/(3n-1)}, satisfy r < s, then r < k/m < s for some integer k.
3, 6, 17, 25, 45, 57, 86, 103, 141, 185, 209, 262, 321, 386, 421, 495, 575, 661, 706, 801, 902, 1009, 1122, 1181, 1303, 1431, 1565, 1705, 1777, 1926, 2081, 2242, 2409, 2495, 2671, 2853, 3041, 3235, 3435, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5003, 5251, 5505
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..200
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[1/(3 h - 1), {h, 1, 60}]]; leastSeparator[t]
Comments