A024825 a(n) = least m such that if r and s in {1/4, 1/8, 1/12,..., 1/4n} satisfy r < s, then r < k/m < s for some integer k.
5, 9, 25, 37, 65, 81, 121, 169, 197, 257, 325, 361, 441, 529, 625, 677, 785, 901, 1025, 1089, 1225, 1369, 1521, 1681, 1765, 1937, 2117, 2305, 2501, 2601, 2809, 3025, 3249, 3481, 3721, 3845, 4097, 4357, 4625, 4901, 5185, 5329, 5625, 5929, 6241
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..300
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[1/(4 h), {h, 1, 60}]]; leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Extensions
Corrected and edited by Clark Kimberling, Aug 07 2012
Comments